Logarithms, Exponents, and Logarithmic Scales

How to wrap your mind around incredibly large or small numbers

Multiplication

$$10 = 10^{1}$$
 so $\log_{10}(10) = 1$
 $100 = 10^{2}$ so $\log_{10}(100) = 2$
 $1000 = 10^{3}$ so $\log_{10}(1000) = 3$
 $10,000,000 = 10^{7}$ so $\log_{10}(10,000,000) = 7$

$$10^3 \times 10^7 = 1,000 \times 10,000,000 = 10,000,000,000 = 10^{10}$$

$$\log_{10}(10^3) + \log_{10}(10^7) = \log_{10}(10^{10}) = 10$$

→ When you multiply numbers, you add their logarithms.

Example

1.496 =
$$10^{0.174931}$$
 so $\log_{10}(1.496) = 0.174931$
 $\log_{10}(1.496 \times 10^{11}) = \log_{10}(1.496) + \log_{10}(10^{11})$
= $11 + 0.174931$
= 11.174931

Negative logarithms

$$0.1 = 10^{-1}$$
 so $\log_{10}(0.1) = -1$
 $001 = 10^{-2}$ so $\log_{10}(0.01) = -2$
 $0.001 = 10^{-3}$ so $\log_{10}(0.001) = -3$
 $0.0000001 = 10^{-7}$ so $\log_{10}(0.0000001) = -7$

$$10^{-3} \times 10^7 = 0.001 \times 10,000,000 = 10,000 = 10^4$$

$$\log_{10}(10^{-3}) + \log_{10}(10^{+7}) = \log_{10}(10^{4}) = 4$$

Exponent

$$100 \times 100 \times 100 = 100^3 = 10^6$$

SO

$$log_{10}(100^3) = 3 \times log_{10}(100)$$

= 3 \times 2
= 6

→ When you raise a number to a power, you multiply the logarithm by the power.

$$\log_{10}(x^n) = n \log_{10}(x)$$

Logarithmic Scales

Each increase in the power of 10 is called a "cycle".

When you plot data on a log-log graph, a straight line indicates a power law.

The slope is the power law exponent

$$rac{L}{L_{\odot}} = \left(rac{M}{M_{\odot}}
ight)^{3.5}$$

